当前位置: 首页 > 滚动

正弦的公式???

来源:热点网 发布时间:2023-05-29 10:26:44
正弦定理公式是:a/sina=b/sinb=c/sinc=2R。正弦值是在直角三角形中,对边的长比上斜边的长的值。 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。通常用符号sin表示。

文章目录:

1、正弦的公式???

一、正弦的公式???

公式分类


(资料图片仅供参考)

现列出公式如下:  sin2α=2sinαcosα   tan2α=2tanα/(1-tan^2(α))   cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)   可别轻视这些字符,它们在数学学习中会起到重要作用.包括一些图像问题和函数问题中

三倍角公式

sin3α=3sinα-4sin^3(α)   cos3α=4cos^3(α)-3cosα   tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)

半角公式

sin^2(α/2)=(1-cosα)/2   cos^2(α/2)=(1+cosα)/2   tan^2(α/2)=(1-cosα)/(1+cosα)   tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]   cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]   tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]   cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]   cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]   sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

其他

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0   cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及   sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2   tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1))   cos4A=1+(-8*cosA^2+8*cosA^4)   tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA   cos5A=16cosA^5-20cosA^3+5cosA   tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

六倍角公式

sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))   cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))   tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

七倍角公式

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))   cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))   tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

八倍角公式

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))   cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)   tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

九倍角公式

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))   cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))   tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

十倍角公式

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))   cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))   tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

N倍角公式

根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)   为方便描述,令sinθ=s,cosθ=c   考虑n为正整数的情形:  cos(nθ)+ i sin(nθ)   = (c+ i s)^n   = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...  +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...  =>比较两边的实部与虚部   实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...  i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...  对所有的自然数n,  1.cos(nθ):  公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示.  2.sin(nθ):  (1)当n是奇数时:  公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示.  (2)当n是偶数时:  公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉.  (例.c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)

以上就是小编对于正弦公式的相关信息的介绍,希望能对大家有所帮助。

上一篇 下一篇
最新推荐 更多>>